Enter a problem...
Linear Algebra Examples
y=4x+3x-2y=4x+3x−2 , y=6y=6
Step 1
Step 1.1
Move all terms containing variables to the left side of the equation.
Step 1.1.1
Subtract 4x4x from both sides of the equation.
y-4x=3x-2y−4x=3x−2
y=6y=6
Step 1.1.2
Subtract 3x3x from both sides of the equation.
y-4x-3x=-2y−4x−3x=−2
y=6y=6
y-4x-3x=-2y−4x−3x=−2
y=6y=6
Step 1.2
Subtract 3x3x from -4x−4x.
y-7x=-2y−7x=−2
y=6y=6
Step 1.3
Reorder yy and -7x−7x.
-7x+y=-2−7x+y=−2
y=6y=6
-7x+y=-2−7x+y=−2
y=6y=6
Step 2
Write the system as a matrix.
[-71-2016][−71−2016]
Step 3
Step 3.1
Multiply each element of R1R1 by -17−17 to make the entry at 1,11,1 a 11.
Step 3.1.1
Multiply each element of R1R1 by -17−17 to make the entry at 1,11,1 a 11.
[-17⋅-7-17⋅1-17⋅-2016][−17⋅−7−17⋅1−17⋅−2016]
Step 3.1.2
Simplify R1R1.
[1-1727016][1−1727016]
[1-1727016][1−1727016]
Step 3.2
Perform the row operation R1=R1+17R2R1=R1+17R2 to make the entry at 1,21,2 a 00.
Step 3.2.1
Perform the row operation R1=R1+17R2R1=R1+17R2 to make the entry at 1,21,2 a 00.
[1+17⋅0-17+17⋅127+17⋅6016][1+17⋅0−17+17⋅127+17⋅6016]
Step 3.2.2
Simplify R1R1.
[1087016][1087016]
[1087016][1087016]
[1087016]
Step 4
Use the result matrix to declare the final solution to the system of equations.
x=87
y=6
Step 5
The solution is the set of ordered pairs that make the system true.
(87,6)