Linear Algebra Examples

Solve Using a Matrix by Elimination y=4x+3x-2 , y=6
y=4x+3x-2y=4x+3x2 , y=6y=6
Step 1
Move variables to the left and constant terms to the right.
Tap for more steps...
Step 1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.1.1
Subtract 4x4x from both sides of the equation.
y-4x=3x-2y4x=3x2
y=6y=6
Step 1.1.2
Subtract 3x3x from both sides of the equation.
y-4x-3x=-2y4x3x=2
y=6y=6
y-4x-3x=-2y4x3x=2
y=6y=6
Step 1.2
Subtract 3x3x from -4x4x.
y-7x=-2y7x=2
y=6y=6
Step 1.3
Reorder yy and -7x7x.
-7x+y=-27x+y=2
y=6y=6
-7x+y=-27x+y=2
y=6y=6
Step 2
Write the system as a matrix.
[-71-2016][712016]
Step 3
Find the reduced row echelon form.
Tap for more steps...
Step 3.1
Multiply each element of R1R1 by -1717 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 3.1.1
Multiply each element of R1R1 by -1717 to make the entry at 1,11,1 a 11.
[-17-7-171-17-2016][177171172016]
Step 3.1.2
Simplify R1R1.
[1-1727016][11727016]
[1-1727016][11727016]
Step 3.2
Perform the row operation R1=R1+17R2R1=R1+17R2 to make the entry at 1,21,2 a 00.
Tap for more steps...
Step 3.2.1
Perform the row operation R1=R1+17R2R1=R1+17R2 to make the entry at 1,21,2 a 00.
[1+170-17+17127+176016][1+17017+17127+176016]
Step 3.2.2
Simplify R1R1.
[1087016][1087016]
[1087016][1087016]
[1087016]
Step 4
Use the result matrix to declare the final solution to the system of equations.
x=87
y=6
Step 5
The solution is the set of ordered pairs that make the system true.
(87,6)
Enter a problem...
 [x2  12  π  xdx ]